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Abstract 

 A virtual rice leaf color model based on the relationship between pigment contents in rice leaf and leaf 
color was established with the aid of machine learning tools and optimization algorithms. The results showed 
that the accuracy of the obtained training model and prediction model for red (R), green (G), and blue (B) 
components in leaf color reached 96.9 - 97.6, 98.0 - 98.3 and 83.5 - 84.7%, respectively. The correlation 
coefficient between the true and predicted values demonstrated that pigment contents were highly related to 
the R and G components, whereas the correlation for the B component was relatively low. The results of this 
study verified the effective applications of artificial intelligence and machine learning technologies in science 
of traditional agriculture.  
 
Introduction 
 A virtual rice leaf color model that provides information technology support for rice producers is 
an important component of precision agriculture. With the continuing development of information 
technology (IT), the integration of information science (IS) and traditional natural sciences has 
become an effective approach to technological innovation in which IS provides powerful 
technological methods to support traditional sciences. For instance, such techniques as machine 
learning, big data, and intelligent optimization algorithms are effective in supporting computer-aided 
design (CAD) systems. A virtual plant refers to a model established by simulating the growth and 
development of plants using virtual reality technologies on computer platforms. This model can 
facilitate the analysis and monitoring of plant growth rhythms, which are important applications of 
IT in the field of precision agriculture (Room et al. 1996, Hanan 1997). According to the sorting and 
analysis of reported literature, since 1960s, there have been a large number of studies in geometric 
modeling of virtual plant shapes by various scholars who used various approaches, such as form 
language (Prusinkiewicz and Lindenmayer 2012, Yang et al. 2019), fractal theory based on iterated 
function systems (IFS) (Barnsley 2014, Balasubramani 2017), cellular automation (Frolov et al. 
2015, Hordijk and Altenberg 2020), numerical calculation of curves and surfaces (Sousa and 
Prusinkiewicz 2003, Uyar and Ülker 2017, Liang et al. 2018, Oqielat 2019, Wang et al. 2020), and 
half-edge data structures (Gasch et al. 2018, Somogy 2018). However, the research on physio-
ecological characteristics of virtual plants is still in its early stages. As an important vegetative organ 
for plants, the leaf may change its color in the process of plant cultivation if the photosynthesis of 
chlorophyll is directly influenced by improper fertilizer, water supply and pests. Thus, agricultural 
research staff and producers often adjust for more reasonable cultivation schemes by predicting 
biomass concentrations in leaves according to the changes in leaf color (Friedman et al. 2016, Zhang 
et al. 2019). Visualization of the process of leaf color change in plants can enable large-scale or high-
cost agricultural experiments that were not possible or not easy to perform to be conducted on the 
computer platform. This approach not only helps to save labor  and  material  costs in studies of rules  
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of leaf color changes but also predicts trends in leaf color changes. Therefore, the establishment of an 
accurate computer model that agrees with the rules of leaf color changes of plants in the real world is 
an issue that urgently needs to be solved in this study field. 
 At present, studies related to virtual plant leaf color models can be categorized into the 
following two types: linear and nonlinear regression models. In the linear regression model, the 
scientific understanding of the physiological mechanisms of leaf color changes is used to identify 
those biological characteristic variables that influence leaf color changes. Then, the mathematical 
equations of multiple linear regression are used to establish the relational model between these 
variables and the RGB components. In the nonlinear regression model, the method of machine 
learning is utilized to establish the learning model between the physiological or ecological factors of 
plants and leaf color changes. Studies that belong to the first type of model include the following. 
The causal model was established between the nitrogen contents in two different varieties of rice 
leaves and their leaf color changes (Zhang et al. 2014). The experimental results obtained by these 
researchers showed that the proposed model could accurately simulate the actual leaf color change of 
a certain rice variety. In another study the canopy images of maize growth were collected and the 
causal model was obtained between the color and the chlorophyll, which could then be applied to 
chlorophyll concentration predictions in satellite remote sensing images (Nguy-Robertson et al. 
2015). The relationship was established between pigment contents of leaves with different 
phyllotaxes and RGB components by the fitting of the curve equation (Yi et al. 2018). Leaf images 
were denoised with image processing techniques and further, the regression model was established 
between the soil plant analytical development (SPAD) value and the leaf color of tobacco (Chen et 
al. 2020). With the rapid development of artificial intelligence technologies, new opportunities have 
emerged for traditional agriculture studies that involve leaf color modeling work related to machine 
learning. For example, the prediction model of external growth environment factors of rice and leaf 
SPAD values was established via support vector regression (SVR) (Yi et al. 2016a). The results 
demonstrated that SVR solved the regression problem of small samples well. Support vector 
machines (SVM) and neural networks were adopted to establish the prediction models of rice leaf 
pigments and leaf color, respectively (Sun et al. 2017). The model was built between the SPAD 
value and RGB in artificial neural network, which they then used in the nondestructive detection of 
chlorophyll contents in potato leaves (Gupta and Pattanayak 2017). Several other researchers 
adopted deep learning techniques in the establishment of plant leaf color regression models and the 
identification of different leaves (VijayaLakshmi and Mohan 2016, Lee et al.2017, Zhu et al. 2018, 
Kaur et al. 2019). 
 The factors that have impacts on leaf color changes are complicated. Specifically, the first group 
of modeling methods is guaranteed by strict linear equations, whose modeling process is easy to 
implement. However, due to the models’ oversimplification, they show a weaker generalization 
ability. In contrast, the second group of modeling methods is mainly based on machine learning 
technologies that search for an optimized solution in a hypothetical space. Therefore, the 
generalization ability of the models for learning is stronger than that of the first group. Pigments of 
plant leaves mainly consist of chlorophyll a, chlorophyll b, lutein, and carotene with blue-green, 
yellow-green, and yellow and orange colors, respectively. Without considering the influence from 
external light, when the contents of chlorophyll a and chlorophyll b exceed those of lutein and 
carotene by a large margin, the apparent leaf color will be green (Croft and Chen 2017). In view of 
this finding, machine learning was used in this study to establish a visualization model between the 
aforementioned four types of pigments and the leaf color. Furthermore, an intelligent algorithm of 
meta-parameters optimization for SVR was designed to reduce the prediction errors of the proposed 
model. 
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Materials and Methods 
 This study takes the regular “Zhongjiazao 35” rice variety planted in the middle and lower 
reaches of the Yangtze River in China as the testing material, and models the aforementioned four 
kinds of biological pigments and the virtual rice leaf color as examples. The detailed research content 
and methods are shown in Fig. 1. 
 

 
Fig.1. Research methods and technology roadmap. 

 
 The rice leaf data related to modeling were provided by the Key Laboratory of Agricultural IT 
of Colleges and Universities in Jiangxi province, China. The measurement procedure for 
concentrations of chlorophyll a, chlorophyll b, lutein, and carotene are as follows. At first, holes 
were punched on leaves with an equal mass for sampling. Afterwards, the samples were soaked in 
95% ethyl alcohol of until all the pigments were extracted. The solutions were then measured by a 
722(N) visible spectrophotometer for the absorbance of the four pigments at wavelengths of 665, 
649, 449 and 446 nm. Furthermore, the equation introduced in Yi et al. (2017) and Yi et al. (2018) 
was used to convert the values of absorbance to the concentrations of the four pigments. For leaf 
RGB, the obtainment process was divided into the following two steps. First, a Microtek color 
scanner (Model: 1660XL Plus, resolution: 600 dpi) was used to scan the front of the leaf. Second, the 
image processing toolkit in Matlab R2013a was utilized to remove the image impurities and obtain 
the RGB values of leaf color.  
 SVM possesses significant advantages in solving nonlinear classification problems with small 
samples. To allow SVM to solve regression problems, Vapnik introduced insensitive loss in SVM as 
 : ( ) ( )

1
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 where, ( )f x  is the separated hyperplane in the high-dimensional feature space; i and i* are the 
Lagrange multipliers; c is the penalty factor introduced when solving for the optimal values of i 
andi*; and k is the kernel function that is used to map the inner product among samples in the 
original feature space into the high-dimensional feature space. The data measurement error in this 
experiment satisfies the Gaussian distribution, and the Gaussian kernel function is adopted for leaf 
color modeling, as shown in the Eq. 2 below. 
 

   ( )( 2) , ( ;0, )ii N x x Ix x   ,       (2) 
 

 where, N is the standard normal density function and  signifies the radial radius of the 
distribution. 
 The constrained optimization of SVR meta-parameters c,   and  can enhance the 
generalization ability of the regression model. However, research in this regard remains an open-
ended question at the moment (Soentpiet 1999). As the value of  influences the accuracy of task 
solving, only the first two meta-parameters are optimized and selected in this study as indicated in 
the Eq. 3. 
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 where, c* and * are the values of the meta-parameters after SVR optimization. The solution 
draws on the lessons from the intelligent algorithm proposed by Pan (2012), which simulated the 
fruit flies’ searching for food via olfaction and vision. According to Liu et al. (2006), fruit flies not 
only have sensing capabilities in olfaction and vision but also olfactory and visual memories. To 
include the two types of memorizing abilities above and improve the convergence rate and accuracy 
of the SVR meta-parameter optimization algorithm, two aspects of the fruit fly optimization 
algorithm (FOA) were modified in the current study. One change is that the estimated value of 
sample distribution proposed by Cherkassky and Ma (2004) is used as the rough memory of food 
location for the fruit fly population, i.e., the knowledge learned or the prior knowledge is applied. 
The corresponding calculation formulas are shown in the Eqs. 4 and 5: 
 

 0* max(  3  ,  3 )c y y y y     ,       (4) 

 0 (0.1 0.5)* ( )d range X � ,              (5) 
 

 where y and y  are the average value and standard deviation of the leaf color RGB 
components, respectively, and d  is the dimension of the input leaf pigment data X, whose value 
range can be determined by the function of  range. 
 The FOA algorithm adopts the reciprocal of the distance from the fruit fly to the origin of the 
Cartesian coordinate system as the food concentration smelled by the fly, which then leads to the loss 
of the fruit fly’s original memory for the food odor in the next algorithm iteration. Therefore, in the 
second modification to the FOA algorithm, the original memory value of the fruit fly is added into 
the algorithm as indicated by steps 1, 2, and 11 of algorithm 1 shown below. 
 Through the data acquisition and algorithm design of the SVR meta-parameter optimization, the 
feature set S of the rice leaf color model is obtained as S = {X,Y}, in which X consists of 
concentrations of chlorophyll a, chlorophyll b, lutein and carotene, and Y  comprises the R, G, and B 
components of leaf color. The process of meta-parameter extraction and fitting of leaf color 
parameters based on SVR is shown in Fig. 2. 
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Fig. 2. Meta-parameters selection of SVR. 
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 The shape edge of plant leaves can be plotted as a closed curve. Taking the leaf of rice as an 
example, its leaf apex only satisfies the Co continuity property, and the local bending deformation of 
the leaf can happen under the influence of internal and external forces. As the B-Spline curve defines 
different basis functions in the range of [0 - 1], its curve of degree n is merely related to n + 1 control 
points. Therefore, the local shape control of this curve is comparatively flexible and the constructed 
curve satisfies the property of 0C  continuity or above (Cottrell et al. 2009). In consideration of this 
finding, the cubic B-Spline curve was selected in this work and its parametric equation is represented 
as follows: 

 ,3
0

( ) ( )
n

i j i
i

C t P N t


 ,                                          (6) 

 where, ( )C t refers to all the points on the edge of the leaf, t  [0, 1]; P represents the control 
points of curve deformation, which is defined in the corresponding basis function N ; and j  is the 
index of the starting control point influenced by one basis function. In this study, C++, Open 
Graphics Library (OpenGL) 2.1, and OpenGL Shading Language 330 were adopted in the 
programming. The point data structure on the edge of the rice leaf is defined as a combined vector: 
vector4 <vector3, vector4, vector3, vector2>, as shown in Fig. 3. The first and third components are 
the vectors of a point and its normal vector in the spherical coordinates, the second component is the 
predicted leaf color value, and the last component consists of the texture coordinates. 

 

 
Fig. 3. Data structure of the geometric vertex. 

 
Results and Discussion 
 The morphological change of plant leaves is a highly complex life process, which finds an 
outstanding external expression in the rich leaf colors. Pigments are the blending agent for the leaf 
color, which to a large extent decides the functional performance of biological substances 
(photosynthesis). To study the leaf color change rules of the virtual plants on the computer platform, 
accurate data models should be first built. However, samples of eco-physiology data of plants are 
difficult and costly to collect; therefore, abundant sample data were not collected. Therefore, this 
study introduced SVR into the data modeling process of virtual rice leaf color. To enhance the 
training and prediction accuracy of the SVR-based models, the authors improved the artificial 
intelligence (AI) algorithm of FOA for selecting meta-parameters for SVR and built visual models of 
rice leaf by the spline function and the OpenGL rendering library. The proposed algorithm and three 
other algorithms were compared and evaluated (Fig. 4).  
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Fig. 4. Comparison of four types of meta-parameter search algorithms for pigments and RGB colors in SVR 

learning. The horizontal axis is the number of iterations in the algorithm, and the vertical axis is the mean 
square error of the algorithm, which can be calculated as in the Eq. 3. 

 In Pan (2012), the initial locations of fruit flies were random, satisfying the diverse characteristic 
of intelligent algorithms which, however, led to instability in the execution of the algorithm. Yi et al. 
(2016b) adopted the method of Cherkassky and Ma (2004) to estimate the initial locations of the 
FOA population, which were fixed within a certain range for searching. In the first round of 
iterations, the fruit fly population was rapidly brought close to the feasible solutions for the SVR 
meta-parameters. The experimental results showed that the improvement enhanced the searching 
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accuracy of population parameters which is in accordance with the findings of Yi et al. (2016b). For 
the FOA algorithm to converge, Pan (2012) adopted the reciprocal of distance from the population to 
the origin of coordinates as the evaluation function. If the algorithm proposed in Yi et al. (2016b) 
failed to converge in the first iteration, the estimated information of the target to be solved would be 
lost in the second or following iterations. This approach can lead to random searching in a wide 
range, thereby compromising the convergence rate of parameter optimization for the algorithm. 
Based on these, the current study was undertaken the parameter estimation approach as in 
Cherkassky and Ma (2004) for pigments and obtains prior knowledge for the R, G, and B 
components of leaf color. Furthermore, these sets of knowledge were added in the expression of the 
evaluation function in the FOA algorithm. 

During the process of SVR modeling for 41 training samples and 30 testing samples of pairs of 
pigments and rice leaf RGB components, the initial population of the optimization algorithm was 30, 
and the number of iterations was 300. As shown in Table 1, the proposed algorithm performed better 
in its overall convergence time and error evaluation of SVR meta-parameter optimization during 
sample training were compared to the first three approaches. 

 

Table 1. Evaluation of the meta-parameter optimization for four algorithms. 
 

Algorithms Popula-
tion 

Number 
of 

iterations 

Convergence time 
(epoch) 

Fitting function value/Error 
evaluation 

R G B R G B 

Cherkassky and Ma 2004 - - - - - 0.1206 0.1893 0.2534 
Pan 2012 30 300 84 69 21 0.0099 0.2854 0.0744 
Yi at el. 2016b 30 300 236 182 78 0.0025 0.0197 0.0147 
Algorithm 1 30 300 38 259 14 0.0024 0.0174 0.0031 

 

 The leaf blade is the carrier of leaf color. In this context, the RGB components are obtained by 
the SVR prediction of biological pigment concentrations. The true and predicted RGB component 
distributions corresponding to the 30 similar samples with biological pigments are presented in Fig. 5. 
The results show that the values of the R and G components were larger than that of the B component, 
which is consistent with the experimental results of Zhang et al. (2014) and Yi et al. (2018). 

 
Fig. 5. Distribution of the predicted values of the RGB components. The vertical axis shows the normalized 

RGB values, respectively. Taking R as an example, the calculation formula is R/(R+G+B). 
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 The predicted values of the RGB components from the three sets of pigment samples with 
chlorophyll a (Ca), chlorophyll b (Cb), lutein (Cc), and carotene (Cd) were selected for leaf color 
visualization, and the results are presented in Fig. 6. In the growth and development period, rice 
leaves were green. When concentrations of lutein and carotene were enhanced, the value of the G 
component in leaf color reduced, resulting in a darker leaf color. In terms of object choice in leaf 
color modeling, two differences between the present study and that of Yi et al. (2018) observed. One 
difference is that the latter only considered the influence of the total concentrations of Ca, Cb, and 
carotenoid on leaf color. The other difference is that Yi et al. (2018) fitted the values of the R, G, and 
B components, respectively while ignoring their synergy. In the data acquisition of the present study, 
the three components were normalized, thereby reflecting the relation among the biological pigment 
concentrations, the leaf color components and the components themselves. In this way, more 
abundant biological semantic information was expressed. 

 
Fig. 6. Simulation results of virtual leaves. The rendered leaf color value corresponding to pigment 

concentrations: (a) (Ca=0.545, Cb=0.257,Cc=0.746, Cd=0.816)  (R=0.372549, G=0.462745, 
B=0.164706); (b) (Ca=0.532, Cb=0.227,Cc=0.686, Cd=0.745) (R=0.378261, G=0.547826, B=0.073913); 
(c) (Ca=0.367, Cb=0.159,Cc =0.462 , Cd=0.508)  (R=0.371094, G=0.515625, B=0.113281). 

 
 To measure the error between the predicted value from the leaf color model and the actual value, 
the standard root mean square error (RMSE), an internationally applied value, was adopted for 
validation in this study. The calculation formula is shown in the Eq. 7. The degrees of correlation 
between the biological pigment concentrations and the R, G, and B components of the leaf color 
were calculated using the Eq. 8 following Chang and Lin (2011). 
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 where y  is the actual value of the R, G, or B in leaf color and the corresponding predicted value 
is ŷ , and n is the number of training samples, which is set to be 41 in this study. The experimental 
condition is shown in Table 2 in which ci

* and 0
* are the estimated results of the biological pigment 

samples in the SVR meta-parameter optimization, i.e., the samples’ prior knowledge, and while c* 
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and *  are the values at the moment of convergence for the algorithm. In addition,  is the threshold 
of allowed regression error, which is set to be 0.01 (Chang and Lin 2011). 
 
Table 2. Model evaluation indicators. 

 

Label 
Prior knowledge SVR meta-parameters Training stage Predicting stage 
*
0c  *

0  *c  *    RMSE 2r  RMSE 2r  

R 0.403694277 0.531329044 2.1931 5.3362 0.01 0.023975 0.87938 0.031348 0.8048 
G 0.596586577 0.575331531 6.2479 18.2575 0.01 0.016542 0.95062 0.020157 0.92732 
B 0.201693658 0.441043654 1.0219 1.1858 0.01 0.15295 0.42258 0.16529 0.34164 

 
 The training and predicting RMSEs of the leaf color RGB models ranged from 2.4 - 3.1, 1.7 - 
2.0 and 15.3 - 16.5%, respectively. Moreover, the correlation between the actual R, G and B 
components of leaf color and the values predicted from the pigment concentrations were 2

Rr = 87 - 
80.5%, 2

Gr = 95.1 - 92.7% and 2
Br  = 42.6 - 34.2%, respectively. As seen, 2

Gr > 2
Rr  0.8 holds whether 

the model is in the training stage or the predicting stage, which means that the relevance between the 
pigments and the R and G components is high. For the B component, 0.3  2

Br  0.5, indicated a low 
correlation. The variation tendency of the experiment above fits those obtained from Zhang et al. 
(2014) and Yi et al. (2018). However, the model accuracy and correlation coefficients in this study 
were higher than those of the latter two models. 
 Visual modeling of plants refers to the generation of visual models of plants by computer 
simulation using visual reality (VR) technology, which is one aspect of VR application in precision 
agriculture. Computer visual modeling of plant growth has two main forms: one considers visual 
effects alone, while the other embodies the theory of Botany based on plant eco-physiology features. 
The former has been applied to industrial design, game and movie special effects, art teaching, and 
other fields; the latter, on the other hand, has been used for plant science research, simulation of the 
agricultural production process, optimization and prediction of crop yield. In the present study, with 
the modeling of rice leaf color as an example, SVR based on selecting the meta-parameters 
algorithm was designed to gain prior knowledge of training samples and memory abilities. The 
models based-SVR were built to map 4D-vector (chlorophyll a, chlorophyll b, lutein and carotene) 
onto leaf color RGB components. The algorithm not only improved the SVR training speed but also 
enhanced the models' predictive accuracy. 
 To sum up, a complete set of methods, including rice leaf pigments and color data collection, 
optimization design of data modeling SVR and leaf color visualization, and results of experimental 
verification were examined in this paper. The modified AI algorithm meta-parameters selection 
described in this report can significantly improve training and predictive accuracy of the models 
based-SVR. The obtained virtual rice leaf color models with biological properties (pigments) can 
enrich the theoretical knowledge of plant leaf color modeling. In future research, the authors would 
attempt to (1) further improve the accuracy of the virtual rice leaf color model by improving the prior 
knowledge acquisition ability of the SVR meta-parameter selection algorithm and (2) build leaf color 
models of human-machine unified perception to make the visualized virtual rice leaf color more 
realistic. 
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